The peculiarities of electron-nuclear and pseudo-Zeeman interactions of ${ }^{19}$ F nuclei in $\mathrm{KZnF}_{3}: \mathrm{Er}^{3+}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys.: Condens. Matter 12331
(http://iopscience.iop.org/0953-8984/1/13/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 10/05/2010 at 18:04

Please note that terms and conditions apply.

The peculiarities of electron-nuclear and pseudo-Zeeman interactions of ${ }^{19} \mathbf{F}$ nuclei in $\mathrm{KZnF}_{3}: \mathbf{E r}^{3+}$

M L Falin, M V Eremin, M M Zaripov, I R Ibragimov, A M Leushin, R Yu Abdulsabirov and S L Korableva
Physico-Technical Institute of the Academy of Sciences of the USSR, Kazan, USSR

Received 16 August 1988

Abstract

The investigation of $\operatorname{Er}^{3+}\left(4 f^{11}\right)$ ions in a KZnF_{3} crystal is carried out by means of electron-nuclear double resonance. The parameters of the interaction of Er^{3+} with F^{-}ions of the nearest environment are determined. The microscopic calculation of these parameters is carried out. Also, the microscopic calculation of the pseudo-Zeeman interaction parameters is carried out for the first time.

1. Introduction

The paramagnetic atoms having a Γ_{8} quartet ground state are very informative in the investigation of electron-nuclear interactions in crystal. This paper contains a report of the continuation of work presented by Falin et al (1987) and is concerned with the experimental and theoretical investigation of the interaction of $\operatorname{Er}^{3+}\left(4 f^{114} \mathrm{I}_{15 / 2}\right)$ ions with fluorine nuclei of the nearest environment in a KZnF_{3} crystal. The choice of KZnF_{3} crystal is determined by the fact that for the $\mathrm{KZnF}_{3}: \mathrm{Er}^{3+}$ system the Stark structure of levels and the wavefunctions of the ground state are determined experimentally (Antipin et al 1976).

The spin Hamiltonian has five independent parameters differing from that for Kramers ions in a cubic crystal field which have two parameters. Thus it is possible to control the developing theory more rigidly. It is known that the interaction of rare-earth ions with fluorine nuclei differs considerably from a purely dipole-dipole interaction.

We hope to clarify the reasons for such a difference by a more thorough investigation of the $\mathrm{KZnF}_{3}: \mathrm{Er}^{3+}$ crystal. In particular, in this paper, we study the effects of spin polarisation of the outer 5 s and 5 p shells in more detail than was done previously in the papers by Anikeenok et al $(1982,1984,1986)$. Previously the effects of spin polarisation have been used only for the analysis of rare-earth ions in the S state (Watson and Freeman 1961, Casas-Gonzales et al 1986). Clarification of their influence on ions with a non-zero orbital moment presents an additional stimulus to develop the theory.

2. Experiment

The present investigation has shown that Er^{3+} in KZnF_{3} substitutes Zn^{2+} isomorphically and the charge compensation occurs non-locally (figure 1). In the octahedral crystal field

Figure 1. Structure of the admixture centre $\left(\mathrm{ErF}_{6}\right)^{3-}$.

Figure 2. The splitting of the ${ }^{4} \mathrm{I}_{15 / 2}$ term of the Er^{3+} ion in the cubic field of KZnF_{3} (Antipin et al 1976).
the ground term ${ }^{4} \mathrm{I}_{15 / 2}$ splits into two doublets Γ_{6}, Γ_{7} and three quartets $\Gamma_{8}^{(1)}, \Gamma_{8}^{(2)}, \Gamma_{8}^{(3)}$, one of which is the lowest (figure 2).

The experimental study was carried out by means of ENDOR. The experimental conditions are analogous to those used by Falin et al (1987).

The local symmetry of each of the six F_{i}^{-}ions $(i=1, \ldots, 6)$ corresponds to the $\mathrm{D}_{4 \mathrm{~h}}$ group; the Hamiltonian describing the interaction of the central ion and F_{i}^{-}in the x, y, z coordinate system has the form

$$
\begin{aligned}
\mathscr{H}=g \beta \boldsymbol{H} \cdot \boldsymbol{S} & +g^{\prime} \beta\left[4 H_{z} O_{3}^{0}-3\left(H_{x} O_{3}^{1}+H_{y} \Omega_{3}^{1}\right)+5\left(H_{x} O_{3}^{3}-H_{y} \Omega_{3}^{3}\right)\right] \\
& +a \beta^{2} \sum_{k=x, y, z} S_{k}^{2} H_{k}^{2}+b \beta^{2} \sum_{\substack{k=x, y, z \\
k \neq l}}\left(S_{k} S_{l}+S_{l} S_{k}\right) H_{k} H_{l} \\
& -g_{\mathrm{n}}^{F} \beta_{\mathrm{n}} \boldsymbol{H} \cdot \boldsymbol{I}+\sum_{i=3,6} \llbracket A_{\|} S_{z} I_{z}^{i}+A_{\perp}\left(S_{x} I_{x}^{i}+S_{y} I_{y}^{i}\right) \\
& +A_{1} O_{3}^{0} I_{z}^{i}+A_{2}\left(O_{3}^{1} I_{x}^{i}+\Omega_{3}^{1} I_{y}^{i}\right)+A_{3}\left(O_{3}^{3} I_{x}^{i}-\Omega_{3}^{3} I_{y}^{i}\right) \\
& -\beta_{\mathrm{n}}\left\{\left[g_{\mathrm{n} 1} H_{z} I_{z}^{i}+g_{\mathrm{n} 2}\left(H_{x} I_{x}^{i}+H_{y} I_{y}^{i}\right)\right] O_{2}^{0}\right. \\
& +g_{\mathrm{n} 3} H_{z}\left(O_{2}^{1} I_{x}^{i}+\Omega_{2}^{1} I_{y}^{i}\right)+g_{\mathrm{n} 4}\left(O_{2}^{1} H_{x}+\Omega_{2}^{1} H_{y}\right) I_{z}^{i} \\
& \left.+g_{\mathrm{n} 5}\left(H_{x} I_{x}^{i}-H_{y} I_{y}^{i}\right) O_{2}^{2}+g_{\mathrm{n} 6}\left(H_{x} I_{y}^{i}+H_{y} I_{x}^{i}\right) \Omega_{2}^{2}\right\} \rrbracket \\
& +\sum_{i=1, y}\left[A_{\|} S_{x} I_{x}^{i}+A_{\perp}\left(S_{z} I_{z}^{i}+S_{y} I_{y}^{i}\right)+\frac{1}{4}\left\{A_{1}\left(5 O_{3}^{3}-3 O_{3}^{1}\right) I_{x}^{i}\right.\right. \\
& +A_{2}\left[\left(5 \Omega_{3}^{3}-\Omega_{3}^{1}\right) I_{y}^{i}+2\left(5 O_{3}^{2}-O_{3}^{0}\right) I_{z}^{i}\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.-A_{3}\left[\left(\Omega_{3}^{3}+3 \Omega_{3}^{1}\right) I_{y}^{i}-2\left(3 O_{3}^{2}+O_{3}^{0}\right) I_{z}^{i}\right]\right\} \\
& -\beta_{\mathrm{n}}\left\{-\frac{1}{2}\left[g_{\mathrm{n} 1} H_{x} I_{x}^{i}+g_{\mathrm{n} 2}\left(H_{y} I_{y}^{i}+H_{z} I_{z}^{i}\right)\right]\left(O_{2}^{0}-3 O_{2}^{2}\right)\right. \\
& +\frac{1}{2} g_{\mathrm{n} 3} H_{x}\left(2 O_{2}^{1} I_{z}^{i}+\Omega_{2}^{2} I_{y}^{i}\right)+\frac{1}{2} g_{\mathrm{n} 4}\left(2 O_{2}^{1} H_{z}+\Omega_{2}^{2} H_{y}\right) I_{x}^{i} \\
& \left.-\frac{1}{2} g_{\mathrm{n} 5}\left(H_{y} I_{y}^{i}-H_{z} I_{z}^{i}\right)\left(O_{2}^{0}+O_{2}^{2}\right)+2 g_{\mathrm{n} 6}\left(H_{y} I_{z}^{i}+H_{z} I_{y}^{i}\right) \Omega_{2}^{1}\right\} \rrbracket \\
& +\sum_{i=2,5}\left[A_{\|} S_{y} I_{y}^{i}+A_{\perp}\left(S_{z} I_{z}^{i}+S_{x} I_{x}^{i}\right)\right. \\
& -\frac{1}{4}\left\{A_{1}\left(5 \Omega_{3}^{3}+3 \Omega_{3}^{1}\right) I_{y}^{i}+A_{2}\left[2\left(5 O_{3}^{2}+O_{3}^{0}\right) I_{z}^{i}\right.\right. \\
& \left.\left.+\left(5 O_{3}^{3}+O_{3}^{1}\right) I_{x}^{i}\right]+A_{3}\left[2\left(3 O_{3}^{2}-O_{3}^{0}\right) I_{z}^{i}-\left(O_{3}^{3}-3 O_{3}^{1}\right) I_{x}^{i}\right]\right\} \\
& -\beta_{\mathrm{n}}\left\{-\frac{1}{2}\left[g_{\mathrm{n} 1} H_{y} I_{y}^{i}+g_{\mathrm{n} 2} 2 H_{z} I_{z}^{i}+H_{x} I_{x}^{i}\right)\left(O_{2}^{0}+3 O_{2}^{2}\right)\right. \\
& +\frac{1}{2} g_{\mathrm{n} 3} H_{y}\left(\Omega_{2}^{2} I_{x}^{i}+2 \Omega_{2}^{1} I_{z}^{i}\right)+\frac{1}{2} g_{\mathrm{n} 4}\left(\Omega_{2}^{2} H_{x}+2 \Omega_{2}^{1} H_{z}\right) I_{y}^{i} \\
& \left.\left.+\frac{1}{2} g_{\mathrm{n} 5}\left(H_{z} I_{z}^{i}-H_{x} I_{x}^{i}\right)\left(O_{2}^{0}-O_{2}^{2}\right)+2 g_{\mathrm{n} 6}\left(H_{z} I_{x}^{i}+H_{x} I_{z}^{i}\right) O_{2}^{1}\right\}\right] \tag{1}
\end{align*}
$$

where O_{m}^{n} and Ω_{m}^{n} are spin operators (Altshuler and Kozyrev 1972); $A_{\mid}, A_{\perp}, A_{1}, A_{2}$ and A_{3} are the components of transferred hyperfine interaction (THFI); $g_{\mathrm{n} 1}, \ldots, g_{\mathrm{n} 6}$ are the parameters characterising the nuclear pseudo-Zeeman interaction. The Hamiltonians of the interaction of Er^{3+} with F^{-}situated in x, y axes have been obtained by means of transformation of the corresponding local axes to the general coordinate system.

The total Hamiltonian of the complex (the central ion and the atoms of the nearest environment) were averaged on the electron states with accuracy up to second order of the perturbation theory in the usual THFI and up to first order in the other terms in (1) using the approximation of the usual strong electron Zeeman interaction. Then the expressions for the frequencies of ENDOR transition for all F_{1-6}^{-}ions were obtained from the operator containing nuclear variables.

$$
\begin{equation*}
\nu_{3,6}^{2}=\left(P-C_{1}\right)^{2} \cos ^{2} \vartheta+\left(Q-C_{2}\right)^{2} \sin ^{2} \vartheta+C_{3}^{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& P=M A_{\|}-\mu(M) A_{\perp}^{2}-\nu_{L} \\
& Q=M A_{\perp}-\mu(M) A_{\mid} A_{\perp}-\nu_{\mathrm{L}} \\
& C_{1}=\frac{1}{2}\left\{A_{1}\left(3-5 \cos ^{2} \vartheta\right) O_{3}^{0}+\beta_{\mathrm{n}}\left[-g_{\mathrm{n} 1}\left(1-3 \cos ^{2} \vartheta\right)+g_{\mathrm{n} 4} \sin ^{2} \vartheta\right] O_{2}^{0} H\right\} \\
& C_{2}=\frac{1}{2}\left\{\left[A_{2}\left(1-5 \cos ^{2} \vartheta\right)-A_{3} \cos 4 \varphi \sin ^{2} \vartheta\right] O_{3}^{0}+\beta_{\mathrm{n}}\left[-g_{\mathrm{n} 2}\left(1-3 \cos ^{2} \vartheta\right)\right.\right. \\
& \left.\left.+g_{\mathrm{n} 3} \cos ^{2} \vartheta+\left(g_{\mathrm{n} 5} \cos ^{2} 2 \varphi+g_{\mathrm{n} 6} \sin ^{2} 2 \varphi\right) \sin ^{2} \vartheta\right] O_{2}^{0} H\right\} \\
& C_{3}=-\frac{1}{2}\left[A_{3} O_{3}^{0}+\frac{1}{2} \beta_{\mathrm{n}}\left(g_{\mathrm{n} 6}-g_{\mathrm{n} 5}\right) O_{2}^{0} H\right] \sin 4 \varphi \sin ^{3} \vartheta . \\
& \nu_{1,4}^{2}=\left(P-C_{1}^{\prime}\right)^{2} \cos ^{2} \varphi \sin ^{2} \vartheta+\left(Q-C_{2}^{\prime}\right)^{2} \sin ^{2} \varphi \sin ^{2} \vartheta \\
& +\left(Q-C_{2}^{\prime}-C_{3}^{\prime}\right)^{2} \cos ^{2} \vartheta \tag{3}
\end{align*}
$$

where

$$
\begin{gathered}
C_{1}^{\prime}=\frac{1}{2}\left\{A_{1}\left(3-5 \cos ^{2} \varphi \sin ^{2} \vartheta\right) O_{3}^{0}-\frac{1}{2} \beta_{\mathrm{n}}\left[g_{\mathrm{n} 1}\left(3 \cos ^{2} \vartheta-3 \cos 2 \varphi \sin ^{2} \vartheta-1\right)\right.\right. \\
\left.\left.-2 g_{\mathrm{n} 4}\left(1-\cos ^{2} \varphi \sin ^{2} \vartheta\right)\right] O_{2}^{0} H\right\}
\end{gathered}
$$

Table 1. Spin Hamiltonian parameters. The following values were taken from the work of Korableva (1978): $g=3.990(5) ; g^{\prime}=-0.035(5) ; a=-0.081 \mathrm{~cm}^{-1} ; b, g_{\mathrm{n} 3}, g_{\mathrm{n} 4}, g_{\mathrm{n} 5}=0$.

Fluorine shell	A_{1} (MHz)	A_{\perp} (MHz)	A_{1} (MHz)	A_{2} (MHz)	A_{3} (MHz)	$g_{\mathrm{n} 1}$	$g_{\mathrm{n} 2}$	$g_{\mathrm{n} 6}$
1	$25.16(5)$	$-22.56(5)$	$0.58(5)$	$-0.42(5)$	$-0.11(5)$	$0.03(1)$	$0.02(1)$	$0.03(1)$
2	$3.28(3)$	$-1.63(3)$						
3	$1.35(2)$	$-0.65(2)$						

$$
\begin{align*}
& C_{2}^{\prime}=\frac{1}{2}\left\{A_{2}(1\right.\left.\left.-5 \cos ^{2} \varphi \sin ^{2} \vartheta\right)+A_{3}\left[3-\left(4-\cos ^{2} \varphi\right) \sin ^{2} \vartheta\right]\right\} O_{3}^{0} \\
&-\frac{1}{4} \beta_{\mathrm{n}}\left[g_{\mathrm{n} 2}\left(3 \cos ^{2} \vartheta-3 \cos 2 \varphi \sin ^{2} \vartheta-1\right)-2 g_{\mathrm{n} 3} \cos ^{2} \varphi \sin ^{2} \vartheta\right. \\
&\left.-g_{\mathrm{n} 5}\left(1-\cos 2 \varphi \sin ^{2} \vartheta-3 \cos ^{2} \vartheta\right)-g_{\mathrm{n} 6} \cos ^{2} \vartheta\right] O_{2}^{0} H \\
& C_{3}^{\prime}=-\frac{1}{4}\left\{5 A_{2} \cos 2 \varphi \sin ^{2} \vartheta+A_{3}\left[8-\left(19-14 \cos ^{2} \varphi\right) \sin ^{2} \vartheta\right]\right\} O_{3}^{0} \\
&+\frac{1}{2} \beta_{\mathrm{n}}\left[g_{\mathrm{n} 5}\left(\cos 2 \varphi \sin ^{2} \vartheta+3 \cos ^{2} \vartheta-1\right)-2 g_{\mathrm{n} 6}(\cos 2 \vartheta\right. \\
&\left.\left.+\cos ^{2} \varphi \sin ^{2} \vartheta\right)\right] O_{2}^{0} H \\
& \nu_{2,5}^{2}=\left(P-C_{1}^{\prime \prime}\right)^{2} \sin ^{2} \varphi \sin ^{2} \vartheta+\left(Q-C_{2}^{\prime \prime}\right)^{2} \cos ^{2} \varphi \sin ^{2} \vartheta \\
&+\left(Q-C_{2}^{\prime \prime}-C_{3}^{\prime \prime}\right)^{2} \cos ^{2} \vartheta \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& C_{1}^{\prime \prime}=\frac{1}{2} A_{1}(3-\left.5 \sin ^{2} \varphi \sin ^{2} \vartheta\right) O_{3}^{0}-\frac{1}{4} \beta_{\mathrm{n}}\left[g _ { \mathrm { n } 1 } \left(3 \cos 2 \varphi \sin ^{2} \vartheta\right.\right. \\
&\left.\left.+3 \cos ^{2} \vartheta-1\right)-2 g_{\mathrm{n} 4}\left(1-\sin ^{2} \varphi \sin ^{2} \vartheta\right)\right] O_{2}^{0} H \\
& C_{2}^{\prime \prime}=\frac{1}{2}\left\{A_{2}(1-\right.\left.\left.5 \sin ^{2} \varphi \sin ^{2} \vartheta\right)+A_{3}\left[3-\left(4-\sin ^{2} \varphi\right) \sin ^{2} \vartheta\right]\right\} O_{3}^{0} \\
&-\frac{1}{4} \beta_{\mathrm{n}}\left[g_{\mathrm{n} 2}\left(3 \cos ^{2} \vartheta+3 \cos 2 \varphi \sin ^{2} \vartheta-1\right)\right. \\
&-2 g_{\mathrm{n} 3} \sin ^{2} \varphi \sin ^{2} \vartheta-g_{\mathrm{n} 5}\left(1+\cos 2 \varphi \sin ^{2} \vartheta-3 \cos ^{2} \vartheta\right) \\
&\left.-g_{\mathrm{n} 6} \cos ^{2} \vartheta\right] O_{2}^{0} H \\
& C_{3}^{\prime \prime}=-\frac{1}{4}\left\{-5 A_{2} \cos 2 \varphi \sin ^{2} \vartheta+A_{3}\left[8-\left(19-14 \sin ^{2} \varphi\right) \sin ^{2} \vartheta\right]\right\} O_{3}^{0} \\
&+\frac{1}{2} \beta_{\mathrm{n}}\left[g_{\mathrm{n} 5}\left(-\cos 2 \varphi \sin ^{2} \vartheta+3 \cos ^{2} \vartheta-1\right)\right. \\
&\left.-2 g_{\mathrm{n} 6}\left(\cos 2 \vartheta+\sin ^{2} \varphi \sin ^{2} \vartheta\right)\right] O_{2}^{0} H .
\end{aligned}
$$

M is the projection of the electron spin on the direction of the constant magnetic field $H, \mu(M)=\left[S(S+1)-M^{2}\right] / 2 g \beta H$ and $\nu_{\mathrm{L}}=g_{\mathrm{n}}^{F} \beta_{\mathrm{n}} H$.

In the experiments, H changed in the $x-y$ plane and made an angle φ with the x axis $\left(\vartheta=90^{\circ}\right.$ (figure 1)). The investigation and analysis of ENDOR spectra are similar to those given by Falin et al (1987). The experimental values of the parameters of the spin Hamiltonian and the data on the interaction of Er^{3+} with ${ }^{19} \mathrm{~F}$ nuclei forming the second and third coordination spheres of the environment are given in table 1.

Figure 3. A schematic diagram of the appearance of the local field on the ligand nucleus due to the polarisation of the filled $l_{a}^{\prime \prime}$ shell of the rare-earth ion.

3. Theory

According to Anikeenok et al (1986) the A_{i} components of the THFI tensor are obtained by averaging the Hamiltonian of electron-nuclear interactions of the general form

$$
\begin{equation*}
\mathscr{H}_{1}=\sum b^{(j 1) k}\left[\left(R^{(j)} I^{(1)}\right)^{(k)} C^{(k)}\right] \tag{5}
\end{equation*}
$$

where $R^{(j)}$ are irreducible tensor operators, $I^{(1)}$ the spherical components of the nuclear spin $I, b^{(j 1) k}$ the combinations of the transfer integrals and $C^{(k)}$ the spherical tensors of the angles ϑ and φ. In our case, $C^{(k)}=1$. The reduced matrix elements of the operators $W^{(1 k) j}$ and $V^{(j)}$ for the ground state $\left\langle 4 \mathrm{f}^{114} \mathrm{I}_{15 / 2}\right\rangle \mathrm{Er}^{3+}$ have been given by Anikeenok et al (1984). The effects of the spin polarisation of the outer filled $5 s$ and 5 p shells of the rareearth ions are accounted for by means of the configurational interaction method. A diagram of the virtual electron transfer is given in figure 3 . The line labelled 1 corresponds to the Coulomb interaction of the electrons. $l_{a}^{\prime \prime}, l_{a}$ and l_{a}^{\prime} denote the orbital quantum numbers of the filled, non-filled (4f) and empty shells, respectively. l_{c} is the quantum number of the ligand shells. The broken circle in figure 3 corresponds to the hyperfine interaction of ligand electrons from shell l_{c} with nuclear spin I. Lines 2 and 4 correspond to the electron jumps.

The matrix elements of the irreducible tensor operators $R^{(j)}$ are determined by

$$
\left(J M\left|R^{(j)}\right| J M\right)=(-1)^{J-M}\left(\begin{array}{ccc}
J & j & J \tag{6}\\
-M & m & M
\end{array}\right)
$$

Here $I^{(1)}$ are spherical components of the ligand nuclear spin. The quantities $b^{(j 1) k}$ are determined by the expression

$$
\begin{align*}
b^{(j 1) k}=- & \sqrt{\frac{2 j+1}{2}} J^{(0 k) k}\left(\bar{\psi} J\left\|W^{(1 k) j)}\right\| \bar{\psi} J\right) g^{(k)} \\
& -15 \sqrt{\frac{2 j+1}{2}} \sum_{k_{1}}\left\{\begin{array}{ccc}
k_{1} & j & 1 \\
1 & 2 & k
\end{array}\right\}\left(\bar{\psi} J\left\|W^{\left(1 k_{1}\right) j}\right\| \bar{\psi} J\right) g^{\left(k_{1}\right)} J_{2}^{\left(2 k_{1}\right) k} \\
& +5 \sqrt{\frac{3}{2}}\left(\bar{\psi} J\left\|V^{(j)}\right\| \bar{\psi} J\right) \tilde{g}^{(j)} J^{(1 j) k} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& J^{(0 k) k}=(-1)^{l_{a}^{\prime}}\left(\begin{array}{lll}
l_{a}^{\prime} & k & l_{a}^{\prime \prime} \\
0 & 0 & 0
\end{array}\right) \sum \lambda_{n s} a_{s, s^{\prime}} \lambda_{n^{\prime} s^{\prime}} \tag{8}\\
& j^{\left(2 k_{1}\right) k}=\sum_{q m^{\prime \prime} m^{\prime}}(-1)^{2+k_{1}+q} \sqrt{2 k+1}\left(\begin{array}{ccc}
2 & k_{1} & k \\
-q & q & 0
\end{array}\right)(-1)^{l^{\prime}{ }_{a}-m^{\prime}} \\
& \times \sqrt{2 k_{2}+1}\left(\begin{array}{ccc}
l_{a}^{\prime} & k_{1} & l_{a}^{\prime \prime} \\
-m^{\prime} & q & m^{\prime \prime}
\end{array}\right)(-1)^{l_{c}-m^{\prime}}\left(\begin{array}{ccc}
l_{c} & 2 & l_{c} \\
-m^{\prime} & q & m^{\prime \prime}
\end{array}\right) \\
& \times \lambda_{l_{a}^{\prime} m^{\prime}} a_{p} \lambda_{l_{a}^{\prime \prime} m^{\prime \prime}} \tag{9}\\
& j^{\left(1 k_{1}\right) k}=\sum_{q m^{\prime \prime} m^{\prime}}(-1)^{1+k_{1}+q \sqrt{2 k+1}}\left(\begin{array}{ccc}
1 & k_{1} & k \\
-q & q & 0
\end{array}\right)(-1)^{I_{a}^{\prime}-m^{\prime}} \\
& \times \sqrt{2 k_{1}+1}\left(\begin{array}{ccc}
l_{a}^{\prime} & k_{1} & l_{a}^{\prime \prime} \\
-m^{\prime} & q & m^{\prime \prime}
\end{array}\right)(-1)^{l_{c}-m^{\prime}}\left(\begin{array}{ccc}
l_{c} & 1 & l_{c}^{\prime} \\
-m^{\prime} & q & m^{\prime \prime}
\end{array}\right) \\
& \times \lambda_{l_{a}^{\prime} m^{\prime}} a_{p} \lambda_{l_{a}^{\prime \prime} m^{\prime \prime}} \tag{10}\\
& g^{(j)}=2 \sum_{k_{2}}(-1)^{j+k_{2}+1}\left(l_{a}^{\prime}\left\|C^{k_{2}}\right\| l_{a}\right)\left(l_{a}\left\|C^{k_{2}}\right\| l_{a}^{\prime \prime}\right) \\
& \times\left\{\begin{array}{lll}
l_{a}^{\prime} & l_{a}^{\prime \prime} & j \\
l_{a} & l_{a} & k_{2}
\end{array}\right\} \frac{R^{\left(k_{2}\right)}\left(l_{a}, l_{a}^{\prime} ; l_{a}^{\prime \prime}, l_{a}\right)}{\left|\Delta_{l_{a}^{\prime \prime} l_{a}^{\prime}}\right|} \tag{11}\\
& \tilde{g}^{(j)}=\frac{2}{\left|\Delta_{l_{a}^{\prime \prime} l_{a}^{\prime}}\right|}\left(\frac{2 \Theta_{1}^{(j)}}{2 j+1}+\sum_{k_{2}}(-1)^{j+k_{2}+1}\left\{\begin{array}{lll}
l_{a}^{\prime} & l_{a}^{\prime \prime} & j \\
l_{a} & l_{a} & k_{2}
\end{array}\right\} \Theta_{2}^{\left(k_{2}\right)}\right) \text {. } \tag{12}
\end{align*}
$$

The quantities $\Theta_{1}^{(j)}$ and $\Theta_{2}^{(k 2)}$ are well known in the theory of crystal-field shielding of 4 f electrons (Rajnak and Wybourne 1964).

The pseudo-nuclear Zeeman interaction is calculated easily based on operator (5). The effective operator of the interaction of F^{-}nuclei with a magnetic field has the form
$\mathscr{H}_{\text {eff }}=\left[\left\langle\psi_{0}\right| \sum b^{(j 1) k}\left(\left\{R^{(j)} I^{(1)}\right\}^{(k)} C^{(k)}\right)\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right| g_{J} \beta H J\left|\psi_{0}\right\rangle+\mathrm{CC}\right]\left(E_{n}-E_{0}\right)^{-1}$
where g_{J} is the Lande factor.
The values of the transfer integrals obtained may be used to estimate the intrinsic parameters of the crystal field. The crystal-field operator may be written in the form

$$
\begin{equation*}
\mathscr{H}_{\mathrm{cr}}=\sum_{k, q} a^{(k)}\left(R_{\mathrm{b}}\right)(-1)^{q} C_{q}^{k}\left(r_{a}\right) C_{-q}^{k}\left(\vartheta_{\mathrm{b}}, \varphi_{\mathrm{b}}\right)=\sum_{k, q} B_{q}^{k} C_{q}^{k} \tag{14}
\end{equation*}
$$

where $C_{-q}^{k}\left(\vartheta_{\mathrm{b}}, \varphi_{\mathrm{b}}\right)$ are spherical tensors of the angles $\vartheta_{\mathrm{b}}, \varphi_{\mathrm{b}}$, fixing the direction of the axis of the metal-ligand pair relative to the chosen coordinate system, C_{q}^{k} are spherical tensors operating within the states of the 4 f shell and $a^{(k)}\left(R_{\mathrm{b}}\right)$ are the intrinsic potentials of the crystal field (Newman 1971). According to Eremin (1988), $a^{(k)}$ are determined by the following expressions:

$$
\begin{aligned}
& a^{(2)}=-Z_{c}^{\prime} e^{2}\left(\left\langle r^{2}\right\rangle / R_{c}^{3}\right)\left(1-\sigma_{2}\right)+(5 / 4 \pi)\left(R_{4 \mathrm{f}}^{2} C_{0}^{2} \mid V_{c}\right) \\
&+\frac{10}{7}\left(T_{\sigma} S_{4 \mathrm{f} \sigma}+T_{s} S_{4 \mathrm{f} 2 s}+\frac{3}{2} T_{\pi} S_{4 \mathrm{ff} \pi}\right) \\
&-\frac{5}{7}\left(\varepsilon_{4 \mathrm{f}}-\varepsilon_{a}-\varepsilon_{c}+e^{2} / R+\alpha\right)\left(S_{4 \mathrm{ff} \mathrm{\sigma}}^{2}+S_{4 \mathrm{f} 2 \mathrm{~s}}^{2}+\frac{3}{2} S_{4 \mathrm{f} \pi}^{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{5}{7}\left[\varepsilon_{2 \mathrm{p}}\left(S_{4 \mathrm{ff} \mathrm{\sigma}}^{2}+\frac{3}{2} S_{4 f \pi}^{2}\right)+\varepsilon_{2 \mathrm{~s}} S_{4 \mathrm{ffs}}^{2}\right]+\frac{5}{7}\left[\Delta_{2 p 4 \mathrm{f}}\left(\gamma_{4 \mathrm{f} \sigma}^{2}+\frac{3}{2} \gamma_{4 f \pi}^{2}\right)\right. \\
& \left.+\Delta_{254 \mathrm{i}} \gamma_{4 \mathrm{fs}}^{2}\right]+\left[\frac{4}{7} F^{(2)}(\mathrm{f}, \mathrm{~d})-\frac{18}{49} G^{(1)}(\mathrm{f}, \mathrm{~d})\right. \\
& \left.+\frac{11}{147} G^{(3)}(\mathrm{f}, \mathrm{~d})-\frac{125}{1617} G^{(5)}(\mathrm{f}, \mathrm{~d})\right]\left(\gamma_{5 \mathrm{~d} \sigma}^{2}+\gamma_{5 \mathrm{~d} \pi}^{2}\right) \tag{15}\\
& a^{(4)}=-Z_{c}^{\prime} e^{2}\left(\left\langle r^{4}\right\rangle / R_{c}^{5}\right)+(9 / 4 \pi)\left(R_{4 \mathrm{f}}^{2} C_{0}^{4} \mid V_{c}\right)+\frac{18}{7}\left(T_{\sigma} S_{4 \mathrm{f} \sigma}\right. \\
& \left.+T_{\mathrm{s}} S_{4 \mathrm{f} 2 \mathrm{~s}}+\frac{1}{3} T_{\pi} S_{4 \mathrm{f} \pi}\right)-\frac{9}{7}\left(\varepsilon_{4 \mathrm{f}}-\varepsilon_{a}-\varepsilon_{c}+e^{2} / R+\alpha\right) \\
& \times\left(S_{4 \mathrm{f}}^{2} \sigma+S_{4 \mathrm{f} 2 \mathrm{~s}}^{2}+\frac{1}{3} S_{4 f \pi}^{2}\right)-\frac{9}{7}\left[\varepsilon_{2 \mathrm{p}}\left(S_{4 \mathrm{ff} \mathrm{\sigma} \sigma}^{2}+\frac{1}{3} S_{4 \mathrm{ff} \tau}^{2}\right)\right. \\
& \left.+\varepsilon_{2 \mathrm{~s}} S_{4 \mathrm{frs}}^{2}\right]+\frac{9}{7}\left[\Delta_{2 \mathrm{p} 4 \mathrm{f}}\left(\gamma_{4 \mathrm{ff} \mathrm{\sigma} \sigma}^{2}+\frac{1}{3} \gamma_{4 \mathrm{ff} \pi}^{2}\right)+\Delta_{2 \mathrm{sff}} \gamma_{4 \mathrm{fs}}^{2}\right] \\
& +\left[\frac{4}{7} F^{(4)}(\mathrm{f}, \mathrm{~d})-\frac{99}{247} G^{(1)}(\mathrm{f}, \mathrm{~d})-\frac{132}{735} G^{(3)}(\mathrm{f}, \mathrm{~d})\right. \\
& \left.-\frac{5}{339} G^{(5)}(\mathrm{f}, \mathrm{~d})\right]\left(\gamma_{5 \mathrm{~d} \sigma}^{2}-\frac{4}{3} \gamma_{\mathrm{Sd} \pi}^{2}\right) \tag{16}\\
& a^{(6)}=-Z_{c}^{\prime} e^{2}\left\langle r^{6}\right\rangle / R_{c}^{7}+(13 / 4 \pi)\left(R_{4 \mathrm{f}}^{2} C_{0}^{6} \mid V_{c}\right)+\frac{26}{7}\left(T_{\sigma} S_{4 \mathrm{f} \alpha}\right. \\
& \left.+T_{\mathrm{s}} S_{4 \mathrm{f2s}}+\frac{3}{2} T_{\pi} S_{4 \mathrm{ff} \mathrm{\pi}}\right)-\frac{13}{7}\left(\varepsilon_{4 \mathrm{f}}-\varepsilon_{a}-\varepsilon_{c}+e^{2} / R+\alpha\right) \\
& \times\left(S_{4 \mathrm{f} \sigma}^{2}+S_{4 \mathrm{f} 2 \mathrm{~s}}^{2}-\frac{3}{2} S_{4 f \pi}^{2}\right)-\frac{13}{7}\left[\varepsilon_{2 \mathrm{p}}\left(S_{4 \mathrm{f} \sigma}^{2}-\frac{3}{2} S_{4 f \pi}^{2}\right)+\varepsilon_{2 \mathrm{~s}} S_{4 \mathrm{frs}}^{2}\right] \\
& +\frac{13}{7}\left[\Delta_{2 p 4 f}\left(\gamma_{4 f \sigma}^{2}-\frac{3}{2} \gamma_{4 f \pi}^{2}\right)+\Delta_{2 s 4 f} \gamma_{4 \mathrm{fs}}^{2}\right] . \tag{17}
\end{align*}
$$

Here Z_{c}^{\prime} is the charge of the ligand ion and σ_{2} the shielding constant (Gupta and Sen 1973); the second terms in (15)-(17) are due to electron overlap of the density-density type. These terms have been studied recently in detail (Garcia and Faucher 1984). T_{σ}, T_{π} and T_{s} denote the kinetic energy integrals and $S_{4 \mathrm{fIs}}, S_{4 \mathrm{f} \sigma}$ and $S_{4 \mathrm{ff} \mathrm{\pi}}$ the overlap integrals via s, σ and π bonds in the metal-ligand pair. It is assumed that the z axes are parallel and directed along the pair axis. $\varepsilon_{4 \mathrm{f}}$ is the Hartree-Fock energy for 4 f electrons; ε_{a} and ε_{c} are the lattice energies of electrons in the a and c positions (the Madelung energies); α is the approximation factor for exchange two-centre integrals of Coulomb repulsion via overlap integrals, i.e. $\left(4 \mathrm{f} \sigma, 2 \mathrm{p} \sigma\left|e^{2} / r_{12}\right| 2 \mathrm{p} \sigma, 4 \mathrm{f} \sigma\right)=\alpha S_{\sigma}^{2}$ and so on. According to the estimates of Newman and Curtis (1969) this factor is equal to 0.43 for rare-earth fluorides. $\varepsilon_{2 \mathrm{p}}$ and $\varepsilon_{2 \mathrm{~s}}$ denote Hartree-Fock energies of ligand electrons. $F^{k}(4 \mathrm{f}, 5 \mathrm{~d})$ and $G^{k}(\mathrm{f}, \mathrm{d})$ are direct and exchange integrals of the Coulomb interaction of 4 f and 5 d rare-earth ion electrons.

4. Discussion of results

The wavefunctions of the Er^{3+} ground state have the form given by Antipin et al (1976):

$$
\Gamma_{8}^{(1)}\left\{\begin{aligned}
\psi_{1,2} & =0.0444\left|\mp \frac{15}{2}\right\rangle+0.4896\left|\mp \frac{7}{2}\right\rangle \\
& -0.4584\left| \pm \frac{1}{2}\right\rangle+0.7404\left| \pm \frac{9}{2}\right\rangle \\
\psi_{3,4} & =0.0511\left|\mp \frac{13}{2}\right\rangle+0.1772\left|\mp \frac{5}{2}\right\rangle \\
& -0.2095\left| \pm \frac{3}{2}\right\rangle+0.9603\left| \pm \frac{11}{2}\right\rangle .
\end{aligned}\right.
$$

The wavefunctions of the nearest excited states necessary for the calculation of the pseudo-Zeeman interaction are the following (Antipin et al 1976):

Table 2. The overlap integrals for the $4 \mathrm{f}, 5 \mathrm{~s}, 5 \mathrm{p}, 5 \mathrm{~d}$, 6 s and 6 p shells.

Overlap integral designation	Value of the overlap integral		Overlap integral designation	Value of the overlap integral	
	$R=4.063 \mathrm{au}$	$R=4.278 \mathrm{au}$		$R=4.063 \mathrm{au}$	$R=4.278 \mathrm{au}$
S_{4115}	0.0007	0.0009	$S_{5011 \mathrm{~s}}$	0.022	0.0189
$S_{422 \mathrm{~s}}$	0.0123	0.0134	$S_{\text {Sd2s }}$	0.1973	0.1913
$S_{4 f o}$	-0.0171	-0.018	$S_{\text {5d } \sigma}$	-0.1772	-0.1814
$S_{4 i \pi}$	0.0109	0.0117	$S_{\text {5d } \pi}$	0.1235	0.12
S_{2515}	0.0005	0.0004	$S_{651 \mathrm{~s}}$	0.0224	0.0193
S_{5829}	0.0335	0.0294	S_{6625}	0.2099	0.1986
S_{58}	-0.1159	-0.1069	$S_{65 \sigma}$	-0.1511	-0.1489
$S_{\text {spls }}$	0.0024	0.0021	$S_{\text {6p1s }}$	0.0436	0.0374
$S_{\text {sp2s }}$	0.0665	0.0599	$S_{6 p 2 \mathrm{~s}}$	0.2628	0.2446
$S_{\text {Sp } \sigma}$	-0.1329	-0.1269	$S_{\text {6po }}$	-0.084	-0.082
$S_{5 p \pi}$	0.0417	0.0381	$S_{\text {6p } \pi}$	0.1511	0.1427

$$
\begin{aligned}
& \Gamma_{7}\left\{\begin{aligned}
\psi_{5,6}= & 0.6332\left| \pm \frac{13}{2}\right\rangle+0.5819\left| \pm \frac{5}{2}\right\rangle \\
& -0.4507\left|\mp \frac{3}{2}\right\rangle-0.2393\left|\mp \frac{11}{2}\right\rangle
\end{aligned}\right. \\
& \Gamma_{8}^{(2)}\left\{\begin{aligned}
\psi_{7,8} & =-0.0845\left|\mp \frac{15}{2}\right\rangle-0.7309\left|\mp \frac{7}{2}\right\rangle \\
& +0.2363\left| \pm \frac{1}{2}\right\rangle+0.6347\left| \pm \frac{9}{2}\right\rangle \\
\psi_{9,10} & =0.7712\left| \pm \frac{13}{2}\right\rangle-0.4556\left| \pm \frac{5}{2}\right\rangle \\
& +0.4235\left|\mp \frac{3}{2}\right\rangle+0.1354\left|\mp \frac{11}{2}\right\rangle .
\end{aligned}\right.
\end{aligned}
$$

The calculation of the components of A_{i} and $g_{n i}$ parameters was carried out accounting for all the mechanisms proposed by Anikeenok et al (1984) and in the present paper. The values of the overlap integrals are given in table 2. They have been calculated with the Hartree-Fock wavefunctions of Er^{3+} (Eremin et al 1977) and the fluorine functions (Clementi and Roetti 1974). The distance from Er^{3+} to F^{-}was taken to be equal to $2.15 \AA(4.063 \mathrm{au})$ (the expansion of the crystal lattice due to the difference between the ionic radii of $\mathrm{Zn}^{2+}(0.75 \AA)$ and $\mathrm{Er}^{3+}(0.881 \AA)$ (Shannon and Prewitt 1969) was taken into account. The radial 5 s and 5 p functions were taken from Van Piggelen et al (1980) and the 5d, 6s and 6p functions from Rajnak (1963) for Tm^{3+}. The mixing of 1 s and 2 s shells of F^{-}was taken into account. The transfer integrals were taken from Anikeenok et al (1984). They had the following values: $\gamma_{4 \mathrm{fs}}=0.013 ; \gamma_{4 \mathrm{ff} \sigma}=-0.04 ; \gamma_{4 f \pi}=0.05 ; \gamma_{5 \mathrm{ds}}=0.02 ; \gamma_{5 \mathrm{~d} \sigma}=-0.13 ; \gamma_{\mathrm{d} \pi}=0.09 ; \gamma_{5 \mathrm{ps}}=$ $0.04 ; \gamma_{5 p \sigma}=-0.15 ; \gamma_{5 p \pi}=0.09$.

The covalency parameters for $6 s$ and $6 p$ shells which are very uncertain in the crystal are considered to be equal to $\gamma_{5 \mathrm{~d}}$.

The energies of electron transfer were estimated by the same method used by Anikeenok et al (1984): $\Delta_{2 \mathrm{p} 4 \mathrm{f}} \simeq 8.5 \times 10^{4} \mathrm{~cm}^{-1} ; \Delta_{2 \mathrm{sff}} \simeq 26.5 \times 10^{4} \mathrm{~cm}^{-1} ; \Delta_{2 \mathrm{psd}} \simeq$ $1.5 \times 10^{5} \mathrm{~cm}^{-1} ; \quad \Delta_{2 \mathrm{~s} 5 \mathrm{~d}} \simeq 3.3 \times 10^{5} \mathrm{~cm}^{-1} ; \quad \Delta_{5 \mathrm{~s} 5 \mathrm{~d}} \simeq 3.2 \times 10^{5} \mathrm{~cm}^{-1} ; \quad \Delta_{5 \mathrm{sbs}} \simeq 3.5 \times$ $10^{5} \mathrm{~cm}^{-1} ; \Delta_{\text {5p } 6 \mathrm{p}} \simeq 1.9 \times 10^{5} \mathrm{~cm}^{-1}$.

The radial integrals are as follows: $R^{(3)}(5 \mathrm{~s}, 4 \mathrm{f} ; 6 \mathrm{~s}, 4 \mathrm{f})=-0.0303 \mathrm{au} ; R^{(3)}(5 \mathrm{~s}, 4 \mathrm{f} ; 5 \mathrm{~d}$, $4 \mathrm{f})=0.0571 \mathrm{au} ; R^{(2)}(5 \mathrm{p}, 4 \mathrm{f} ; 6 \mathrm{p}, 4 \mathrm{f})=-0.0291 \mathrm{au} ; R^{(4)}(5 \mathrm{p}, 4 \mathrm{f} ; 6 \mathrm{p}, 4 \mathrm{f})=-0.0249 \mathrm{au}$.

The f-5d interaction parameters G_{1}, G_{3}, G_{5} were taken from Starostin et al (1975) for Er^{2+} and $\mathrm{f}-6 \mathrm{~s}$ interaction parameter $G^{(3)}$ was taken to be equal to $2205 \mathrm{~cm}^{-1}$ from

Table 3. Calculated and experimental values of A_{i} and $g_{\pi i}$ for $\mathrm{KZnF}_{3}: \mathrm{Er}^{3+}$.

	$H_{\mathrm{d}-\mathrm{d}}$	$H_{4 \mathrm{f}}$	$H_{5 \mathrm{~d}}$	$H_{6 \mathrm{~s}}$	H_{d}	$H_{5 \mathrm{~s} \rightarrow \mathrm{~d}}$	$H_{5 \mathrm{~s} \rightarrow 6 \mathrm{~s}}$	$H_{5 \mathrm{p} \rightarrow 6 \mathrm{p}}$	Total	Experimental	
$A_{\\|}(\mathrm{MHz})$	29.92	2.00	-2.86	-0.40	0.34	0.01	1.65	-4.92	25.74	25.16	
$A_{1}(\mathrm{MHz})$	-0.06	0.39	-0.01	0	0.11	-0.01	0	0.02	0.45	0.58	
$A_{\perp}(\mathrm{MHz})$	-14.91	-5.29	0.93	-0.61	-2.39	0.04	1.25	-1.39	-22.36	-22.56	
$A_{2}(\mathrm{MHz})$	-0.01	-0.14	0.04	0	-0.08	0	0	0	-0.19	-0.42	
$A_{3}(\mathrm{MHz})$	0.04	-0.09	0.01	0	-0.04	0	-0.01	0	-0.09	-0.11	
$g_{\mathrm{n} 1}$	0.05	0	0	0	0	0	0	-0.01	0.04	0.03	
$g_{\mathrm{n} 2}$	0.01	0	0	0	0	0	0	0	0.01	0.02	
$g_{\mathrm{n} 6}$	0.01	0.01	0	0	0	0	0	0	0.02	0.03	

Table 4. Calculated and experimental values of A_{s} and A_{p} for $\mathrm{CsCaF}_{3}: \mathrm{Gd}^{3+}$. The experimental values of $A_{\mathrm{s}}=-3.86 \mathrm{MHz}$ and $A_{\mathrm{p}}=5.8 \mathrm{MHz}$ were taken from the work of Casas-Gonzales et al (1986) and the experimental values of $A_{\mathrm{s}}=-3.869 \mathrm{MHz}$ and $A_{\mathrm{p}}=$ 5.729 MHz from the work of Allsopp et al (1987).

	H_{ddd}	$H_{4 \mathrm{f}}$	$H_{5 \mathrm{~d}}$	$H_{5 \mathrm{~s}}$	H_{d}	$H_{5 \mathrm{~s}-6 \mathrm{~s}}$	$H_{5 \mathrm{p}-6 \mathrm{p}}$	Total	Experimental
$A_{\mathrm{s}}(\mathrm{MHz})$	0	2.48	-3.13	-1.85	0.51	3.12	-5.02	-3.89	-3.86
$A_{\mathrm{p}}(\mathrm{MHz})$	6.40	0.08	-0.70	-0.22	0.09	0.59	-0.44	5.80	5.8
									5.729

Goldschmidt (1978). The results of the theoretical calculations are compared with the experimental results in table 3 . The values of the separate calculations are given in the second to ninth columns, respectively: the dipole-dipole contribution H_{d-d} accounting for multipole corrections; the contribution $H_{4 \mathrm{f}}$ due to the effect of overlap and covalency of 4 f shells; the contribution $H_{5 d, 6 \mathrm{~s}}$ due to the electron transfer to the empty 5 d and 6 s shells; the contribution H_{d} due to the mixing of 4 f and 5 d states by the field of virtual hole in F^{-}; the contributions $H_{5 s \rightarrow 6 \mathrm{~s}}, H_{5 s \rightarrow 5 \mathrm{~d}}$ and $H_{5 p \rightarrow 6 \mathrm{p}}$ due to the spin polarisation of 5 s and 5 p shells. The summary and experimental values of THFI are given in the last two columns.

On the basis of the theory developed, it is interesting to calculate the parameters for Gd^{3+} in CsCaF_{3} (Casas-Gonzales et al 1986, Allsopp et al 1987). Casas-Gonzales et al (1986) gave an analysis of THFI based only on the spin polarisation. The distance $\mathrm{Gd}^{3+}-\mathrm{F}^{-}$was taken to be equal to 4.278 (Casas-Gonzales et al 1986). In table 4 the results of the theoretical calculation, together with the experimental results and calculated values of Casas-Gonzales et al (1986), are presented. The columns in table 4 are analogous to those of table 3. The values of the overlap integrals are given in table 2. The radial integrals and γ parameters were similar to those for Er^{3+}. The energies of the electron transfer were as follows: $\Delta_{2 \text { p4f }} \simeq 10^{5} \mathrm{~cm}^{-1} ; \Delta_{2 \text { s4f }} \simeq 2.8 \times$ $10^{5} \mathrm{~cm}^{-1} ; \quad \Delta_{2 \mathrm{p} 5 \mathrm{~d}} \simeq 1.9 \times 10^{5} \mathrm{~cm}^{-1} ; \quad \Delta_{2 \mathrm{~s} 5 \mathrm{~d}} \simeq 3.7 \times 10^{5} \mathrm{~cm}^{-1} ; \quad \Delta_{5 \mathrm{p} 6 \mathrm{p}} \simeq 1.9 \times 10^{5} \mathrm{~cm}^{-1} ;$ $\Delta_{556 \mathrm{~s}} \simeq 3 \times 10^{5} \mathrm{~cm}^{-1}$.

It is obvious from a comparison of the results presented in table 4 that our calculations are in better agreement with the experiment that those of Casas-Gonzales et al (1986) and have more apparent physical sense.

In conclusion, let us calculate the crystal-field parameters B_{4}^{0} and B_{6}^{0} which in octahedral environment are connected with parameters $a^{(4)}$ and $a^{(6)}$ by the following relations: $B_{4}^{0}=\frac{7}{16} a^{(4)} ; B_{6}^{0}=\frac{3}{64} a^{(6)}$ using equations (16) and (17). The following calculated values were used in the calculation: $T_{\sigma}=-0.0094 ; T_{\mathrm{s}}=-0.0002 ; T_{\pi}=0.002$; $\varepsilon_{a}=0.8243 \mathrm{au} ; \varepsilon_{c}=-0.43 \mathrm{au} ; \varepsilon_{4 f}\left(\mathrm{Er}^{3+}\right)=-1.97378 \mathrm{au}$ (Van Piggelen et al 1980); $\varepsilon_{2 \mathrm{p}}\left(\mathrm{F}^{-}\right)=-0.1808$ au (Fuchikami 1970); $\varepsilon_{2 \mathrm{~s}}\left(\mathrm{~F}^{-}\right)=-1.0744$ au (Fuchikami 1970). As a result the contributions calculated according to equations (16) and (17) are as follows: $B_{4}^{0}=319 \mathrm{~cm}^{-1} ; B_{6}^{0}=13 \mathrm{~cm}^{-1}$. According to Antipin et al (1977) the corresponding values are $B_{4}^{0}=302 \mathrm{~cm}^{-1}$ and $B_{6}^{0}=13 \mathrm{~cm}^{-1}$.

As can be seen from tables 3 and 4 and the values of the calculated parameters B_{4}^{0} and B_{6}^{0}, the theory developed for the mechanisms of the rare-earth ion-ligand bonding explains without contradiction the THFI parameters including the pseudoZeeman interaction of rare-earth ions in the various parameters as well as in the crystal-field parameters.

References

Allsopp R A, Baker J M, Bluck L J C and Buzare J Y 1987 J. Phys. C: Solid State Phys. 20451
Altshuler S A and Kozyrev B M 1972 Electron Paramagnetic Resonance (Moscow: Nauka)
Anikeenok O A, Eremin M V, Falin M L, Konkin A L and Meiklyar V P 1984 J. Phys. C: Solid State Phys. 172813
Anikeenok O A, Eremin M V, Falin M L and Meiklyar V P 1982 J. Phys. C: Solid State Phys. 151557
Anikeenok O A, Eremin M V and Khutsishvili O G 1986 Fiz. Tverd. Tela 281690
Antipin A A, Fedii A A and Tsvetkov E A 1976 Paramagnetic Resonance (Kazan: Kazan State University) 12133
Antipin A A, Vinokurov A V, Davydova M P, Korableva S L, Stolov A L and Fedii A A 1977 Phys. Stat. Sol. b 81287
Casas-Gonzales J, Studzinski P, Andriessen J, Buzare J Y, Fayet J C and Spaeth J M 1986 J. Phys. C: Solid State Phys. 196767
Clementi E and Roetti C 1974 At. Data Nucl. Data Tables 14177
Eremin M V 1988 PhD Thesis Kazan State University
Eremin M V, Ivoilova E Kh and Kudrov B M 1977 VINITI Report N 1817-77
Falin M L, Zaripov M M, Leushin A N and Ibragimov I R 1987 Fiz. Tverd. Tela 292814
Fuchikami N 1970 J. Phys. Soc. Japan 28871
Garcia D and Faucher M 1984 Phys. Rev. B 301703
Goldschmidt Z B 1978 Handbook on the Physics and Chemistry of Rare-Earths (Amsterdam: NorthHolland) ch I
Gupta R P and Sen S K 1973 Phys. Rev. 7850
Korableva S L 1978 Fiz. Tverd. Tela 203701
Newman D J 1971 Adv. Phys. 20197
Newman D J and Curtis M M 1969 J. Phys. Chem. Solids 3027
Rajnak K 1963 J. Chem. Phys. 372440
Rajnak K and Wybourne B G 1964 J. Chem. Phys. 41565
Shannon R D and Prewitt C T 1969 Acta Crystallogr. B 25925
Starostin N V, Gruzdev P F, Pashinina E P and Ganin V A 1975 Spektroskopija Kristallov (Moscow: Nauka)
Van Piggelen H U, Nieuwpoort W C and van der Velde G A J 1980 J. Chem. Phys. 723227
Watson R E and Freeman A J 1961 Phys. Rev. Lett. 6277

